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Accurate and simple magnetic material law is necessary to correctly model complete electromagnetic systems. In this article, a new 

formulation based on the scalar quasi-static hysteresis Preisach model extended to dynamic behavior using fractional derivation dynamic 

contribution is proposed. The fractional contribution is solved using convolution which highly reduces the numerical issues. The order 

of the fractional derivation provide a new degree of freedom and allows to correctly obtain simulation results on a very large frequency 

bandwidth. By using such formulation, space discretization techniques (finite differences, finite elements) are avoided which are highly 

space and time consuming while keeping the global simulation results precise. The numerical implementation of the problem and some 

experimental validations are shown in the article. 
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I. INTRODUCTION 

The development of new electromagnetic designs, such as 

the improvement of already existing ones require precise 

simulation tools. Similar tools can also be used for the 

understanding and interpretation of non-destructive eddy 

current testing and Barkhausen noise measurements’ electrical 

signatures. Recent scientific investigations based on such 

numerical tools mainly focus on coupling Space Discretization 

Techniques (SDT)(Finite Elements Method (FEM), Finite 

Differences Method (DFM)) extended with accurate scalar or 

vectorial, dynamic or static, and considering hysteresis material 

law. For this magnetic material law, it seems that the best results 

come from the extension of the quasi-static hysteresis model 

(Preisach model [1], Jiles-Atherton model [2]) to dynamic 

behavior as a result of the separation losses techniques as 

proposed by Bertotti [3]. The simultaneous resolution between 

SDT procedures and hysteresis models can be realized by 

iterative techniques. One of them is the so-called fixed point 

scheme [4]. Such improved SDT give very accurate results, 

unfortunately the high nonlinear behavior of hysteresis often 

leads to uncertain convergences which leads to numerical errors 

[5]. Furthermore SDT requires huge memory space and such 

simulations are always highly time consuming. In this article, 

an original alternative to scalar SDT is proposed. In this 

approach, time and memory space consuming SDT is replaced 

by the lump model while keeping very accurate simulation 

results on a large frequency bandwidth. Fractional time 

derivative operators makes it convenient to incorporate the 

lump model. For this new approach, two contributions are 

required: 

 a quasi-static contribution using Preisach model. 

 a dynamic contribution  using fractional time 

derivation of the magnetic induction field. 

Different definitions of the fractional derivation are available in 

the literature. In this work resolution by convolution has been 

chosen which simplifies the numerical scheme and reduce the 

computation times.   

II. MODEL 

A. Quasi-static contribution 

Due to the domain wall movements, microscopic eddy 

currents generate through the cross section of a magnetic 

sample as soon as it is exposed to a varying magnetic field. 

Below a threshold frequency (in the decreasing direction) the 

cumulative periodic value of these microscopic eddy currents 

become frequency independent. This behavior is called as the 

quasi-static state. This quasi-static contribution is observable 

when plotting the spontaneous average magnetic induction 

field, B, versus the surface magnetic excitation  field, H for very 

low frequency (ƒ<<1Hz in typical soft magnetic material). 

Different approaches are available in the literature for the 

simulation of the quasi-static hysteresis behavior [1]. Among 

all, Preisach’s model exhibits the interesting property of being 

easily invertible. It is indeed relatively easy to switch from H to 

B as input of the quasi-static hysteresis model. Preisach’s model 

has been widely used to describe the hysteresis phenomenon in 

magnetic materials [6]. It assumes that the material 

magnetization is determined by the contribution of a set of 

elementary hysteresis loops having a distribution function over 

the Preisach's triangle. In order to model precisely the magnetic 

material behavior, it is necessary to accurately determine the 

distribution function from experimental data. There are mainly 

two ways to determine this distribution function. The first way 

assumes that the distribution function has a particular form 

(Lorentzian, Gaussian) and then determines the parameters of 

the chosen function in order to depict the average hysteretic 

behavior. The second way discretizes the distribution function 

in a finite set of values which are determined by suitable 

experimental data. In this study, the second option is chosen 

which is expected to provide higher accuracy.  

Two techniques have been tested for the acquisition of the 

discretized distribution function: The centered cycle technique 

as described in [6] and the Biorci’s method [7]. Both techniques 

provide relatively correct simulation results. A higher number 

of experimental data is required by the first technique but a 



correct behavior can be reached with a lower size of the 

discretized distribution implementation and this means a 

simpler and reduced memory management.  

B. Dynamic contribution 

Under weak frequency conditions, scalar quasi-static lump 

hysteresis models provide accurate results for the evolution of 

the average magnetic induction B versus magnetic excitation 

field H. Such particular external conditions mean homogeneous 

distributions of the induction through the cross section of the 

sample and consequently homogeneous distributions of the 

magnetic losses. Unfortunately for those simple models as soon 

as the quasi-static external conditions expire, huge differences 

appear. Small improvements can be obtained by adding to this 

lump model a simple dynamic contribution, product of a 

damping constant to the time domain derivation of the induction 

field B. This product is analogous to an equivalent excitation 

field H. Here again, even if this adjunction provides a relative 

improvement, correct simulation results are obtained on a 

narrow frequency bandwidth. It seems that a simple viscous 

losses term 
𝑑𝑃

𝑑𝑡
 leads to an overestimation in the high frequency 

part of the magnetization hysteresis loop area versus frequency 

curve. Another correction of the lump model must be done to 

reach correct simulation results on a large frequency bandwidth. 

A mathematical operator dealing with the low frequency and 

the high frequency component in a different way than a straight 

time derivative is required. Such operators can be found in the 

framework of fractional calculus; they are the so-called non 

entire derivatives or fractional derivatives. Fractional derivation 

generalizes the concept of derivative to complex and non-

integer orders. Fractional time derivative 
𝑑𝐵𝑛𝐵

𝑑𝑡𝑛 can be added in 

our lump model as referred by Grünwald Letnikov or 

Riemman-Liouville definitions [8]. Both of them are particular 

cases of a general fractional order operator namely, the first one 

represents the n order derivative, and the other one represents 

the n fold integral. In this sense, the class of functions described 

by the Riemman Liouville definition is broader (function must 

be integrable) than the one defined by Grunwald and Letnikov. 

However, for a function from the Grunwald-Letnikov class, 

both definitions are equivalent. In the present paper, we use the 

Riemman Liouville form for n ∈ [0,1]. 
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where Γ is the Euler gamma function. According to Eq. 1, the 

fractional derivative of a function 𝑓(𝑡)can also be considered 

as the convolution of a 𝑓(𝑡) function and
𝑡𝑛

Γ(1−n)
. In that case n 

is the order of the fractional derivation. The additional time 

derivative present in the formula coincides with the occurrence 

of positive argument of the gamma function, Γ(.), leading to its 

convergence to a finite value. It is obvious that fractional 

derivative includes memory of the previous states. Fractional 

derivative is introduced in the lumped quasi-static hysteresis 

model through a dynamic contribution.  The term 𝜌 ∙
𝑑𝐵

𝑑𝑡
 is 

replaced by 𝜌 ∙
𝑑𝑛𝐵

𝑑𝑡𝑛 , and this contribution is then added to the 

quasi-static contribution, Eq. 2. 
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Fig. 1. Fractional dynamic lump hysteresis model. 

III. SIMULATION RESULTS, COMPARISON 

MEASURE/SIMULATION, AND CONCLUSION 

Specific experimental set up has been carried out in order to 

validate these simulation models. The sample tested is a low 

cobalt iron electrical alloy referenced SV142b. Both thickness 

and width are 5 mm; its conductivity is 1.4×10^7 (Ωm)−1. Due 

to the high electrical conductivity of the test sample, even for 

relatively weak variation of excitation frequencies, large 

variation of cumulative magnetic losses appear. 

 
Fig. 2. Comparison simulation/measure for increasing frequency condition. 

 

As illustrated in Figure 2, the fractional lump model gives 

precise macroscopic behavior B(H), it leads to a very accurate 

formulation of the problem with a high reduction of the 

complexity and of the simulation times.  
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